# **UF28100M**



### **RF Power MOSFET Transistor** 100W, 100-500 MHz, 28V

M/A-COM Products Released - 08.07

### **Features**

- N-channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- High saturated output power
- Lower noise figure than competitive devices
- **RoHS Compliant**

### ABSOLUTE MAXIMUM RATINGS AT 25° C

| Parameter            | Symbol           | Rating      | Units |
|----------------------|------------------|-------------|-------|
| Drain-Source Voltage | $V_{DS}$         | 65          | V     |
| Gate-Source Voltage  | $V_{GS}$         | 20          | V     |
| Drain-Source Current | I <sub>DS</sub>  | 12*         | Α     |
| Power Dissipation    | $P_D$            | 250         | W     |
| Junction Temperature | TJ               | 200         | °C    |
| Storage Temperature  | T <sub>STG</sub> | -55 to +150 | °C    |
| Thermal Resistance   | $\theta_{JC}$    | 0.7         | °C/W  |

### TYPICAL DEVICE IMPEDANCES

| F (MHz)                                             | Z <sub>IN</sub> (Ω) | Z <sub>LOAD</sub> (Ω) |  |  |  |
|-----------------------------------------------------|---------------------|-----------------------|--|--|--|
| 100                                                 | 4.5-j6.0            | 14.5+j0.5             |  |  |  |
| 300                                                 | 2.25-j1.75          | 7.5j1.0               |  |  |  |
| 500                                                 | 1.5+j5.5            | 3.5+j3.5              |  |  |  |
| $V_{DD}$ =28V, $I_{DQ}$ =600 Ma, $P_{OUT}$ =100.0 W |                     |                       |  |  |  |

### **PACKAGE OUTLINE**



Z<sub>IN</sub> is the series equivalent input impedance of the device from gate to gate.

Z<sub>LOAD</sub> is the optimum series equivalent load impedance as measured from drain to drain.

### **ELECTRICAL CHARACTERISTICS AT 25°C**

| Parameter                      | Symbol            | Min | Max  | Units | Test Conditions                                                                             |
|--------------------------------|-------------------|-----|------|-------|---------------------------------------------------------------------------------------------|
| Drain-Source Breakdown Voltage | BV <sub>DSS</sub> | 65  | -    | V     | V <sub>GS</sub> = 0.0 V , I <sub>DS</sub> = 15.0 mA                                         |
| Drain-Source Leakage Current   | I <sub>DSS</sub>  | -   | 3.0  | mA    | $V_{GS} = 28.0 \text{ V}$ , $V_{GS} = 0.0 \text{ V}$                                        |
| Gate-Source Leakage Current    | I <sub>GSS</sub>  | -   | 3.0  | μΑ    | V <sub>GS</sub> = 20.0 V , V <sub>DS</sub> = 0.0 V                                          |
| Gate Threshold Voltage         | $V_{GS(TH)}$      | 2.0 | 6.0  | ٧     | V <sub>DS</sub> = 10.0 V , I <sub>DS</sub> = 300.0 mA                                       |
| Forward Transconductance       | G <sub>M</sub>    | 1.5 | -    | S     | $V_{DS}$ = 10.0 V , $I_{DS}$ 3000.0 mA , $\Delta$ $V_{GS}$ = 1.0V, 80 $\mu s$ Pulse         |
| Input Capacitance              | C <sub>ISS</sub>  | -   | 135  | pF    | V <sub>DS</sub> = 28.0 V , F = 1.0 MHz                                                      |
| Output Capacitance             | Coss              | -   | 90   | pF    | V <sub>DS</sub> = 28.0 V , F = 1.0 MHz                                                      |
| Reverse Capacitance            | C <sub>RSS</sub>  | -   | 24   | pF    | V <sub>DS</sub> = 28.0 V , F = 1.0 MHz                                                      |
| Power Gain                     | $G_P$             | 10  | -    | dB    | $V_{DD}$ = 28.0 V, $I_{DQ}$ = 600.0 mA, $P_{OUT}$ = 100.0 W F =500 MHz                      |
| Drain Efficiency               | ŋ <sub>D</sub>    | 50  | -    | %     | V <sub>DD</sub> = 28.0 V, I <sub>DQ</sub> = 600.0 mA, P <sub>OUT</sub> = 100.0 W F =500 MHz |
| Return Loss                    | $R_L$             | 10  | -    | dB    | V <sub>DD</sub> = 28.0 V, I <sub>DQ</sub> = 600.0 mA, P <sub>OUT</sub> = 100.0 W F =500 MHz |
| Load Mismatch Tolerance        | VSWR-T            | -   | 30:1 | ı     | $V_{DD}$ = 28.0 V, $I_{DQ}$ = 600.0 mA, $P_{OUT}$ = 100.0 W F =500 MHz                      |

<sup>\*</sup>Per side

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298



RF Power MOSFET Transistor 100W, 100-500 MHz, 28V

M/A-COM Products Released - 08.07

### **Typical Broadband Performance Curves**





# POWER OUTPUT vs POWER INPUT VDD = 28 V IDQ = 600 mA (Push pull device) 120 200MHz 400MHz 500MHz 500MHz 0 1 2 4 6 8 10 12

POWER INPUT (W)

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

# **UF28100M**



# RF Power MOSFET Transistor 100W, 100-500 MHz, 28V

M/A-COM Products Released - 08.07

### **TEST FIXTURE SCHEMATIC**



### **TEST FIXTURE ASSEMBLY**



PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
   Visit www.macomtech.com for additional data sheets and product information.