

4-Mbit (512K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C1049B
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - I_{CC} = 90 mA @ 10 ns
- Low CMOS Standby power
 - $I_{SB2} = 10 \text{ mA}$
- 2.0V Data Retention
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in lead-free 36-Lead (400-Mil) Molded SOJ package

Functional Description^[1]

The CY7C1049D is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O0 through I/O7) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{OE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1049D is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Selection Guide

	-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	90	mA
Maximum CMOS Standby Current	10	mA

Note

^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[2]}$ –0.5V to +6.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$ -0.5V to $\rm V_{CC}$ + 0.5V

DC Input Voltage ^[2]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	4.5V-5.5V

Electrical Characteristics Over the Operating Range

					-10	
Parameter	Description	Test Condition	Test Conditions		Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4	V
V _{IH} ^[2]	Input HIGH Voltage			2.0	V _{CC} + 0.5	V
V _{IL} [2]	Input LOW Voltage ^[2]			-0.5	0.8	V
I _{IX}	Input Leakage Current	GND < V _I < V _{CC}		-1	+1	μΑ
l _{OZ}	Output Leakage Current	GND < V _{OUT} < V _{CC} , Output Disabled		-1	+1	μΑ
I _{CC}	VCC Operating	V _{CC} = Max.,	100 MHz		90	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	83 MHz		80	mA
			66 MHz		70	mA
			40 MHz		60	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $CE > V_{IH}$, $V_{IN} > V_{IH}$ or $V_{IN} < V_{IL}$, $f = f_{MAX}$			20	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , CE > $V_{CC} - 0.3V_{IN}$ > $V_{CC} - 0.3V_{IN}$ < 0			10	mA

Capacitance^[3]

Parameter	Parameter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	V _{CC} = 5.0V	8	pF

Thermal Resistance^[3]

Parameter	Description	Test Conditions	SOJ Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	57.91	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[3]		36.73	°C/W

Notes: 2. Minimum voltage is -2.0V and $V_{IH}(max) = V_{CC} + 2V$ for pulse durations of less than 20 ns.

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[4]

Switching Characteristics^[5] Over the Operating Range

		-1	-10		
Parameter	Description	Min.	Max.	Unit	
Read Cycle			•	•	
t _{power}	V _{CC} (typical) to the First Access ^[6]	100		μS	
t _{RC}	Read Cycle Time	10		ns	
t _{AA}	Address to Data Valid		10	ns	
t _{OHA}	Data Hold from Address Change	3		ns	
t _{ACE}	CE LOW to Data Valid		10	ns	
t _{DOE}	OE LOW to Data Valid		5	ns	
t _{LZOE}	OE LOW to Low Z ^[8]	0		ns	
t _{HZOE}	OE HIGH to High Z ^[7, 8]		5	ns	
t _{LZCE}	CE LOW to Low Z ^[8]	3		ns	
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		10	ns	
Write Cycle ^{[9, 1}	0)	'	l		
t _{WC}	Write Cycle Time	10		ns	
t _{SCE}	CE LOW to Write End	7		ns	
t _{AW}	Address Set-Up to Write End	7		ns	
t _{HA}	Address Hold from Write End	0		ns	

- AC characteristics (except High-Z) for 10-ns parts are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c)
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

- told/oH and 30-pF load capacitance.
 topWER gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
 therefore the power supply should be at typical V_{CC} values until the first memory access can be performed.
 therefore the power supply should be at typical V_{CC} values until the first memory access can be performed.
 the power supply should be at typical V_{CC} values until the first memory access can be performed.
 the power supply should be at typical V_{CC} values until the first memory access can be performed.
 the power supply should be at typical V_{CC} values until the first memory access can be performed.
 the power supply should be performed.
 the power supply should

Switching Characteristics^[5] Over the Operating Range (continued)

		-1	10	
Parameter	Description	Min.	Max.	Unit
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-Up to Write End	6		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		5	ns

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ^[12]	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V$		10	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[11]	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1^[13, 14]

- Notes: 11. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50~\mu s$ or stable at $V_{CC(min.)} \ge 50~\mu s$ 12. No input may exceed $V_{CC} + 0.5V_{.}$ 13. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 14. \overline{WE} is HIGH for read cycle.

Switching Waveforms(continued)

Read Cycle No. 2 (OE Controlled)[14, 15]

Write Cycle No. 1 (CE Controlled)[16, 17]

15. Address valid prior to or coincident with \(\overline{CE}\) transition LOW.
 16. Data I/O is high impedance if \(\overline{OE} = V_{|\overline{DE}|}\).
 17. If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) going HIGH, the output remains in a high-impedance state.

Switching Waveforms(continued)

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[16, 17]

Write Cycle No. 3 (WE Controlled, OE LOW)[17]

Truth Table

CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	X	X	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Notes:

^{18.} During this period the I/Os are in the output state and input signals should not be applied.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1049D-10VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial

Please contact your local Cypress sales representative for availability of these parts.

Package Diagram

36-Lead (400-Mil) Molded SOJ (51-85090)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Docume Docume	nt Title: CY70 nt Number: 3	C1049D 4-Mb 8-05474	it (512K x 8)) Static RAM
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Datasheet for C9 IPP
*A	233729	See ECN	RKF	1.AC, DC parameters are modified as per EROS(Spec # 01-2165) 2.Pb-free offering in the 'ordering information'
*B	351096	See ECN	PCI	Changed from Advance to Preliminary Removed 17, 20 ns Speed bin Added footnote # 4 Redefined I _{CC} values for Com'l and Ind'l temperature ranges I _{CC} (Com'l): Changed from 67 and 54 mA to 75 and 70 mA for 12 and 15 ns speed bins respectively I _{CC} (Ind'l): Changed from 80, 67 and 54 mA to 90, 85 and 80 mA for 10, 12 and 15 ns speed bins respectively Added V _{IH(max)} spec in Note# 2 Modified Note# 10 on t _R Changed t _{SCE} from 8 to 7 ns for 10 ns speed bin Changed reference voltage level for measurement of Hi-Z parameters from ±500 mV to ±200 mV Added Truth Table on page# 6 Removed L-Version Added 10 ns parts in the Ordering Information Table Added Lead-Free Product Information Shaded Ordering Information Table
*C	446328	See ECN	NXR	Converted from Preliminary to Final Removed -12 and -15 speed bins Removed Commercial Operating Range product information Changed Maximum Rating for supply voltage from 7V to 6V Updated Thermal Resistance table Changed t _{HZWE} from 6 ns to 5 ns Updated footnote #7 on High-Z parameter measurement Replaced Package Name column with Package Diagram in the Ordering Information table