4-Mbit (512K x 8) Static RAM #### **Features** - Pin- and function-compatible with CY7C1049B - · High speed - $t_{AA} = 10 \text{ ns}$ - · Low active power - I_{CC} = 90 mA @ 10 ns - Low CMOS Standby power - $I_{SB2} = 10 \text{ mA}$ - 2.0V Data Retention - · Automatic power-down when deselected - · TTL-compatible inputs and outputs - Easy memory expansion with CE and OE features - Available in lead-free 36-Lead (400-Mil) Molded SOJ package ## Functional Description^[1] The CY7C1049D is a high-performance CMOS static RAM organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O0 through I/O7) is then written into the location specified on the address pins (A_0 through A_{18}). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{OE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW). The CY7C1049D is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout. #### Selection Guide | | -10 | Unit | |------------------------------|-----|------| | Maximum Access Time | 10 | ns | | Maximum Operating Current | 90 | mA | | Maximum CMOS Standby Current | 10 | mA | #### Note ^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[2]}$ –0.5V to +6.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$-0.5V to $\rm V_{CC}$ + 0.5V | DC Input Voltage ^[2] | 0.5V to V _{CC} + 0.5V | |--|--------------------------------| | Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Range | Ambient
Temperature | V _{CC} | |------------|------------------------|-----------------| | Industrial | –40°C to +85°C | 4.5V-5.5V | ## **Electrical Characteristics** Over the Operating Range | | | | | | -10 | | |--------------------------------|---|--|-----------------|------|-----------------------|------| | Parameter | Description | Test Condition | Test Conditions | | Max. | Unit | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$ | | 2.4 | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$ | | | 0.4 | V | | V _{IH} ^[2] | Input HIGH Voltage | | | 2.0 | V _{CC} + 0.5 | V | | V _{IL} [2] | Input LOW Voltage ^[2] | | | -0.5 | 0.8 | V | | I _{IX} | Input Leakage Current | GND < V _I < V _{CC} | | -1 | +1 | μΑ | | l _{OZ} | Output Leakage
Current | GND < V _{OUT} < V _{CC} ,
Output Disabled | | -1 | +1 | μΑ | | I _{CC} | VCC Operating | V _{CC} = Max., | 100 MHz | | 90 | mA | | | Supply Current | $f = f_{MAX} = 1/t_{RC}$ | 83 MHz | | 80 | mA | | | | | 66 MHz | | 70 | mA | | | | | 40 MHz | | 60 | mA | | I _{SB1} | Automatic CE Power-Down Current —TTL Inputs | Max. V_{CC} , $CE > V_{IH}$, $V_{IN} > V_{IH}$ or $V_{IN} < V_{IL}$, $f = f_{MAX}$ | | | 20 | mA | | I _{SB2} | Automatic CE Power-Down
Current —CMOS Inputs | Max. V_{CC} , CE > $V_{CC} - 0.3V_{IN}$ > $V_{CC} - 0.3V_{IN}$ < 0 | | | 10 | mA | #### Capacitance^[3] | Parameter | Parameter Description Test Conditions | | Max. | Unit | |------------------|---------------------------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 8 | pF | | C _{OUT} | I/O Capacitance | V _{CC} = 5.0V | 8 | pF | #### Thermal Resistance^[3] | Parameter | Description | Test Conditions | SOJ Package | Unit | |-----------------|---|---|-------------|------| | Θ_{JA} | Thermal Resistance (Junction to Ambient) ^[3] | Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board | 57.91 | °C/W | | Θ _{JC} | Thermal Resistance (Junction to Case) ^[3] | | 36.73 | °C/W | Notes: 2. Minimum voltage is -2.0V and $V_{IH}(max) = V_{CC} + 2V$ for pulse durations of less than 20 ns. ^{3.} Tested initially and after any design or process changes that may affect these parameters. #### AC Test Loads and Waveforms^[4] ### Switching Characteristics^[5] Over the Operating Range | | | -1 | -10 | | | |------------------------------|--|----------|------|------|--| | Parameter | Description | Min. | Max. | Unit | | | Read Cycle | | | • | • | | | t _{power} | V _{CC} (typical) to the First Access ^[6] | 100 | | μS | | | t _{RC} | Read Cycle Time | 10 | | ns | | | t _{AA} | Address to Data Valid | | 10 | ns | | | t _{OHA} | Data Hold from Address Change | 3 | | ns | | | t _{ACE} | CE LOW to Data Valid | | 10 | ns | | | t _{DOE} | OE LOW to Data Valid | | 5 | ns | | | t _{LZOE} | OE LOW to Low Z ^[8] | 0 | | ns | | | t _{HZOE} | OE HIGH to High Z ^[7, 8] | | 5 | ns | | | t _{LZCE} | CE LOW to Low Z ^[8] | 3 | | ns | | | t _{HZCE} | CE HIGH to High Z ^[7, 8] | | 5 | ns | | | t _{PU} | CE LOW to Power-Up | 0 | | ns | | | t _{PD} | CE HIGH to Power-Down | | 10 | ns | | | Write Cycle ^{[9, 1} | 0) | ' | l | | | | t _{WC} | Write Cycle Time | 10 | | ns | | | t _{SCE} | CE LOW to Write End | 7 | | ns | | | t _{AW} | Address Set-Up to Write End | 7 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | ns | | - AC characteristics (except High-Z) for 10-ns parts are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c) - 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. - told/oH and 30-pF load capacitance. topWER gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed. therefore the power supply should be at typical V_{CC} values until the first memory access can be performed. therefore the power supply should be at typical V_{CC} values until the first memory access can be performed. the power supply should be at typical V_{CC} values until the first memory access can be performed. the power supply should be at typical V_{CC} values until the first memory access can be performed. the power supply should be at typical V_{CC} values until the first memory access can be performed. the power supply should ## **Switching Characteristics**^[5] Over the Operating Range (continued) | | | -1 | 10 | | |-------------------|------------------------------------|------|------|------| | Parameter | Description | Min. | Max. | Unit | | t _{SA} | Address Set-Up to Write Start | 0 | | ns | | t _{PWE} | WE Pulse Width | 7 | | ns | | t _{SD} | Data Set-Up to Write End | 6 | | ns | | t _{HD} | Data Hold from Write End | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z ^[8] | 3 | | ns | | t _{HZWE} | WE LOW to High Z ^[7, 8] | | 5 | ns | ## Data Retention Characteristics Over the Operating Range | Parameter | Description | Conditions ^[12] | Min. | Max | Unit | |---------------------------------|--------------------------------------|---|-----------------|-----|------| | V_{DR} | V _{CC} for Data Retention | | 2.0 | | V | | I _{CCDR} | Data Retention Current | $\frac{V_{CC}}{CE} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V$ | | 10 | mA | | t _{CDR} ^[3] | Chip Deselect to Data Retention Time | $CE \ge V_{CC} - 0.3V$
$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ | 0 | | ns | | t _R ^[11] | Operation Recovery Time | | t _{RC} | | ns | #### **Data Retention Waveform** ## **Switching Waveforms** **Read Cycle No. 1**^[13, 14] - Notes: 11. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50~\mu s$ or stable at $V_{CC(min.)} \ge 50~\mu s$ 12. No input may exceed $V_{CC} + 0.5V_{.}$ 13. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 14. \overline{WE} is HIGH for read cycle. ## Switching Waveforms(continued) ## Read Cycle No. 2 (OE Controlled)[14, 15] ## Write Cycle No. 1 (CE Controlled)[16, 17] 15. Address valid prior to or coincident with \(\overline{CE}\) transition LOW. 16. Data I/O is high impedance if \(\overline{OE} = V_{|\overline{DE}|}\). 17. If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) going HIGH, the output remains in a high-impedance state. ## Switching Waveforms(continued) ## Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[16, 17] ## Write Cycle No. 3 (WE Controlled, OE LOW)[17] #### **Truth Table** | CE | OE | WE | I/O ₀ –I/O ₇ | Mode | Power | |----|----|----|------------------------------------|----------------------------|----------------------------| | Н | X | X | High-Z | Power-down | Standby (I _{SB}) | | L | L | Н | Data Out | Read | Active (I _{CC}) | | L | Х | L | Data In | Write | Active (I _{CC}) | | L | Н | Н | High-Z | Selected, Outputs Disabled | Active (I _{CC}) | #### Notes: ^{18.} During this period the I/Os are in the output state and input signals should not be applied. ## **Ordering Information** | Speed (ns) | Ordering Code | Package
Diagram | Package Type | Operating
Range | |------------|-----------------|--------------------|--|--------------------| | 10 | CY7C1049D-10VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-Free) | Industrial | Please contact your local Cypress sales representative for availability of these parts. #### **Package Diagram** #### 36-Lead (400-Mil) Molded SOJ (51-85090) All product and company names mentioned in this document may be the trademarks of their respective holders. ## **Document History Page** | Docume
Docume | nt Title: CY70
nt Number: 3 | C1049D 4-Mb
8-05474 | it (512K x 8) |) Static RAM | |------------------|--------------------------------|------------------------|--------------------|---| | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | | ** | 201560 | See ECN | SWI | Advance Datasheet for C9 IPP | | *A | 233729 | See ECN | RKF | 1.AC, DC parameters are modified as per EROS(Spec # 01-2165) 2.Pb-free offering in the 'ordering information' | | *B | 351096 | See ECN | PCI | Changed from Advance to Preliminary Removed 17, 20 ns Speed bin Added footnote # 4 Redefined I _{CC} values for Com'l and Ind'l temperature ranges I _{CC} (Com'l): Changed from 67 and 54 mA to 75 and 70 mA for 12 and 15 ns speed bins respectively I _{CC} (Ind'l): Changed from 80, 67 and 54 mA to 90, 85 and 80 mA for 10, 12 and 15 ns speed bins respectively Added V _{IH(max)} spec in Note# 2 Modified Note# 10 on t _R Changed t _{SCE} from 8 to 7 ns for 10 ns speed bin Changed reference voltage level for measurement of Hi-Z parameters from ±500 mV to ±200 mV Added Truth Table on page# 6 Removed L-Version Added 10 ns parts in the Ordering Information Table Added Lead-Free Product Information Shaded Ordering Information Table | | *C | 446328 | See ECN | NXR | Converted from Preliminary to Final Removed -12 and -15 speed bins Removed Commercial Operating Range product information Changed Maximum Rating for supply voltage from 7V to 6V Updated Thermal Resistance table Changed t _{HZWE} from 6 ns to 5 ns Updated footnote #7 on High-Z parameter measurement Replaced Package Name column with Package Diagram in the Ordering Information table |