4-Mbit (512K x 8) Static RAM #### **Features** - Temperature Ranges - Commercial: 0°C to 70°CIndustrial: -40°C to 85°C - Automotive: –40°C to 125°C - High speed - $-t_{AA} = 10 \text{ ns}$ - · Low active power - 324 mW (max.) - 2.0V data retention - Automatic power-down when deselected - TTL-compatible inputs and outputs - Easy memory expansion with CE and OE features #### Functional Description[1] The CY7C1049CV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (\overline{OE}), and three-state drivers. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A_0 through A_{18}). Reading from the device is accomplished by taking Chip Enable (<u>CE</u>) and Output Enable (<u>OE</u>) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a Write operation (CE LOW, and WE LOW). The CY7C1049CV33 is available in standard 400-mil-wide 36-pin SOJ package and 44-pin TSOP II package with center power and ground (revolutionary) pinout. ^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. ## **Selection Guide** | | | -8 [] | -10 | -12 | -15 | Unit | |--------------------------------------|-------------------------|--------------|-----|-----|-----|------| | Maximum Access Time | | 8 | 10 | 12 | 15 | ns | | Maximum Operating Current Commercial | | 100 | 90 | 85 | 80 | mA | | | Industrial | 110 | 100 | 95 | 90 | mA | | | Automotive | - | - | - | 95 | mA | | Maximum CMOS Standby Current | Commercial / Industrial | 10 | 10 | 10 | 10 | mA | | | Automotive | - | - | - | 15 | mA | Shaded areas contain advance information. #### **Pin Definitions** | Pin Name | 36-SOJ
Pin Number | 44 TSOP-II
Pin Number | I/O Type | Description | |-------------------------------------|----------------------|-------------------------------|---|--| | A ₀ -A ₁₈ | 1-5,14-18, | 3-7,16-20, | Input | Address Inputs used to select one of the address locations. | | | 20-24,32-35 | 26-30,38-41 | | | | I/O ₀ - I/O ₇ | 7,8,11,12,25, | 9,10,13,14, | Input/Output | Bidirectional Data I/O lines. Used as input or output lines | | | 26,29,30 | 31,32,35,36 | | depending on operation | | NC ^[2] | 19,36 | 1,2,21,22,23,
24,25,42,43, | No Connect | No Connects. This pin is not connected to the die | | | | 44 | | | | WE | 13 | 15 | Input/Control Write Enable Input, active LOW. When selected LOW, is conducted. When selected HIGH, a READ is conducted. | | | CE | 6 | 8 | Input/Control | Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip. | | ŌĒ | 31 | 37 | Input/Control | Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins. | | V _{SS} , GND | 10,28 | 12,34 | Ground | Ground for the device. Should be connected to ground of the system. | | V _{CC} | 9,27 | 11,33 | Power Supply | Power Supply inputs to the device. | Notes: 2. NC pins are not connected on the die. ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[3]}$ –0.5V to +4.6V | DC Voltage Applied to Outputs | | |--|----------------------------| | DC Voltage Applied to Outputs in High-Z State ^[3] | $-0.5V$ to $V_{CC} + 0.5V$ | | DC Input Voltage ^[3] | . –0.5V to V_{CC} + 0.5V | | Current into Outputs (LOW) | 20 mA | #### **Operating Range** | Range | Ambient Temperature | V _{CC} | |------------|---------------------|-------------------------------| | Commercial | 0°C to +70°C | $3.3\text{V} \pm 0.3\text{V}$ | | Industrial | -40°C to +85°C | | | Automotive | -40°C to +125°C | | #### **Electrical Characteristics** Over the Operating Range | Parame- | | | | -8 | 3 [] | -1 | 0 | -1 | 12 | -1 | 5 | | |------------------|---|---|---------------|------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|----| | ter | Description | Test Cond | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min.; I_{OH} = 0$ | –4.0 mA | 2.4 | | 2.4 | | 2.4 | | 2.4 | | V | | V _{OL} | Output LOW Voltage | V _{CC} = Min.,; I _{OL} = | 8.0 mA | | 0.4 | | 0.4 | | 0.4 | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.0 | V _{CC}
+ 0.3 | V | | V_{IL} | Input LOW Voltage[3] | | | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | V | | I _{IX} | Input Load Current | $GND \leq V_I \leq V_CC$ | Com'l / Ind'l | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | μА | | | | | Automotive | - | - | - | - | - | - | -20 | +20 | μΑ | | I _{OZ} | Output Leakage
Current | $\begin{array}{l} GND \leq V_{OUT} \leq \\ V_{CC}, \end{array}$ | Com'l / Ind'l | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | μА | | | | Output Disabled | Automotive | - | - | - | - | - | - | -20 | +20 | μΑ | | I _{CC} | V _{CC} Operating | V _{CC} = Max., | Com'l | | 100 | | 90 | | 85 | | 80 | mA | | | Supply Current | $f = f_{MAX} = 1/t_{RC}$ | Ind'l | | 110 | | 100 | | 95 | | 90 | mA | | | | | Automotive | | - | | - | | - | | 95 | mA | | I _{SB1} | Automatic CE | Max. V _{CC} , CE ≥ | Com'l / Ind'l | | 40 | | 40 | | 40 | | 40 | mA | | | Power-down Current —TTL Inputs | V_{IH} ; $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$ | Automotive | | - | | - | | - | | 45 | mA | | I _{SB2} | Automatic CE Power-down Current —CMOS Inputs $ \begin{array}{c} \underline{\text{Max}}. \ V_{\text{CC}}, \\ CE \geq V_{\text{CC}} - 0 \\ V_{\text{IN}} \geq V_{\text{CC}} - 0 \\ \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \\ \end{array} $ | | Com'l/Ind'l | | 10 | | 10 | | 10 | | 10 | mA | | | | | Automotive | | - | | - | | - | | 15 | mA | #### Capacitance^[4] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|-------------------|------------------------------------|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C$, $f = 1$ MHz, | 8 | pF | | C _{OUT} | I/O Capacitance | $V_{CC} = 3.3V$ | 8 | pF | #### Thermal Resistance^[4] | Parameter | Description | Test Conditions | 36-pin SOJ
(Non
Pb-Free) | 36-pin SOJ
(Pb-Free) | 44-TSOP-II
(Non
Pb-Free) | 44-TSOP-II
(Pb-Free) | Unit | |-------------------|---------------------------------------|---|--------------------------------|--------------------------|--------------------------------|-------------------------|------| | Θ_{JA} | (Junction to
Ambient) | Test conditions follow standard test methods and procedures for | 46.51 | 46.51 | 41.66 | 41.66 | °C/W | | $\Theta_{\sf JC}$ | Thermal Resistance (Junction to Case) | measuring thermal impedance, per EIA / JESD51. | 18.8 | 18.8 | 10.56 | 10.56 | °C/W | ^{3.} $V_{\rm IL}$ (min.) = -2.0V and $V_{\rm IH}$ (max) = $V_{\rm CC}$ + 0.5V for pulse durations of less than 20 ns. 4. Tested initially and after any design or process changes that may affect these parameters. #### AC Test Loads and Waveforms^[5] # AC Switching Characteristics^[6] Over the Operating Range | | | | | -1 | 10 | -12 | | -15 | | | |-----------------------------------|---|------|------|------|------|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Read Cycle | | | | | | | | • | | | | t _{power} ^[7] | V _{CC} (typical) to the first access | 1 | | 1 | | 1 | | 1 | | μS | | t _{RC} | Read Cycle Time | 8 | | 10 | | 12 | | 15 | | ns | | t _{AA} | Address to Data Valid | | 8 | | 10 | | 12 | | 15 | ns | | t _{OHA} | Data Hold from Address Change | 3 | | 3 | | 3 | | | 3 | ns | | t _{ACE} | CE LOW to Data Valid | | 8 | | 10 | | 12 | | 15 | ns | | t _{DOE} | OE LOW to Data Valid | | 4 | | 5 | | 6 | | 7 | ns | | t _{LZOE} | OE LOW to Low-Z | 0 | | 0 | | 0 | | 0 | | ns | | t _{HZOE} | OE HIGH to High-Z ^[8, 9] | | 4 | | 5 | | 6 | | 7 | ns | | t _{LZCE} | CE LOW to Low-Z ^[9] | 3 | | 3 | | 3 | | 3 | | ns | | t _{HZCE} | CE HIGH to High-Z ^[8, 9] | | 4 | | 5 | | 6 | | 7 | ns | | t _{PU} | CE LOW to Power-up | 0 | | 0 | | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-down | | 8 | | 10 | | 12 | | 15 | ns | | Write Cycle ^[7] | 10, 11] | | | | | | | • | | | | t _{WC} | Write Cycle Time | 8 | | 10 | | 12 | | 15 | | ns | | t _{SCE} | CE LOW to Write End | 6 | | 7 | | 8 | | 10 | | ns | | t _{AW} | Address Set-up to Write End | 6 | | 7 | | 8 | | 10 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | 0 | | 0 | | ns | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 6 | | 7 | | 8 | | 10 | | ns | | t _{SD} | Data Set-up to Write End | 4 | | 5 | | 6 | | 7 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | 0 | | 0 | | ns | | t _{LZWE} | WE HIGH to Low-Z ^[9] | 3 | | 3 | | 3 | | 3 | | ns | | t _{HZWE} | WE LOW to High-Z ^[8, 9] | | 4 | | 5 | | 6 | | 7 | ns | ^{5.} AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d). #### **Switching Waveforms** #### Read Cycle No. 1^[12, 13] #### Read Cycle No. 2 (OE Controlled)[13, 14] - 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. - test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. tpOWER gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed. t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. At any given temperature and voltage condition, t_{HZOE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any given device. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. - 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. - 13. WE is HIGH for Read cycle. #### **Switching Waveforms** (continued) ## Write Cycle No. 1(WE Controlled, OE HIGH During Write)[15, 16] ## Write Cycle No. 2 (WE Controlled, OE LOW)[16] - 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW. - 15. Data I/O is high-impedance if $\overline{OE} = V_{IH}$. 16. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state. - 17. During this period the I/Os are in the output state and input signals should not be applied. # **Truth Table** | CE | OE | WE | I/O ₀ -I/O ₇ Mode | | Power | |----|----|----|---|----------------------------|----------------------------| | Н | Х | Х | High-Z | Power-down | Standby (I _{SB}) | | L | L | Н | Data Out | Read | Active (I _{CC}) | | L | Х | L | Data In | Write | Active (I _{CC}) | | L | Н | Н | High-Z | Selected, Outputs Disabled | Active (I _{CC}) | # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | | | |---------------|-----------------------|-----------------|--|--------------------|------------------------------|------------| | 10 | CY7C1049CV33-10VC V36 | | 0 CY7C1049CV33-10VC V36 36-lead (400-Mil) Molded SO. | | 36-lead (400-Mil) Molded SOJ | Commercial | | | CY7C1049CV33-10ZC | Z44 | 44-pin TSOP II | | | | | | CY7C1049CV33-10VI | V36 | 36-lead (400-Mil) Molded SOJ | Industrial | | | | | CY7C1049CV33-10ZI | Z44 | 44-pin TSOP II | | | | | 12 | CY7C1049CV33-12VC | V36 | 36-lead (400-Mil) Molded SOJ | Commercial | | | | | CY7C1049CV33-12ZC | Z44 | 44-pin TSOP II | | | | | | CY7C1049CV33-12VI | V36 | 36-lead (400-Mil) Molded SOJ | Industrial | | | | | CY7C1049CV33-12ZI | Z44 | 44-pin TSOP II | | | | | 15 | CY7C1049CV33-15VXC | V36 | 36-lead (400-Mil) Molded SOJ (Pb-Free) | Commercial | | | | | CY7C1049CV33-15VC | V36 | 36-lead (400-Mil) Molded SOJ | | | | | | CY7C1049CV33-15ZXC | Z44 | 44-pin TSOP II (Pb-Free) | | | | | | CY7C1049CV33-15ZC | Z44 | 44-pin TSOP II | | | | | | CY7C1049CV33-15VI | V36 | 36-lead (400-Mil) Molded SOJ | Industrial | | | | | CY7C1049CV33-15ZI | Z44 | 44-pin TSOP II | | | | | | CY7C1049CV33-15VE | V36 | 36-lead (400-Mil) Molded SOJ | Automotive | | | | | CY7C1049CV33-15ZE | Z44 | 44-pin TSOP II | | | | #### **Package Diagrams** #### 36-Lead (400-Mil) Molded SOJ V36 44-pin TSOP II Z44 DIMENSION IN MM (INCH) MAX CSPI .095 115 All products and company names mentioned in this document may be the trademarks of their respective holders. # **Document History Page** Document Title: CY7C1049CV33 4-Mbit (512K x 8) Static RAM | Document | Number: | 38-05006 | |----------|---------|----------| |----------|---------|----------| | Document | ocument number. 30-03000 | | | | | | | | | |----------|--------------------------|---------------|--------------------|--|--|--|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | | | | | | | ** | 112569 | 03/06/02 | HGK | New Data Sheet | | | | | | | *A | 114091 | 04/25/02 | DFP | Changed Tpower unit from ns to μs | | | | | | | *B | 116479 | 09/16/02 | CEA | Add applications foot note to data sheet, page 1. | | | | | | | *C | 262949 | See ECN | RKF | Added Automotive Specs to Datasheet Added Θ_{JA} and Θ_{JC} values on Page #3. | | | | | |