

4-Mbit (512K x 8) Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°CIndustrial: -40°C to 85°C
- Automotive: –40°C to 125°C
- High speed
 - $-t_{AA} = 10 \text{ ns}$
- · Low active power
 - 324 mW (max.)
- 2.0V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description[1]

The CY7C1049CV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (\overline{OE}), and three-state drivers. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable (<u>CE</u>) and Output Enable (<u>OE</u>) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1049CV33 is available in standard 400-mil-wide 36-pin SOJ package and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		-8 []	-10	-12	-15	Unit
Maximum Access Time		8	10	12	15	ns
Maximum Operating Current Commercial		100	90	85	80	mA
	Industrial	110	100	95	90	mA
	Automotive	-	-	-	95	mA
Maximum CMOS Standby Current	Commercial / Industrial	10	10	10	10	mA
	Automotive	-	-	-	15	mA

Shaded areas contain advance information.

Pin Definitions

Pin Name	36-SOJ Pin Number	44 TSOP-II Pin Number	I/O Type	Description
A ₀ -A ₁₈	1-5,14-18,	3-7,16-20,	Input	Address Inputs used to select one of the address locations.
	20-24,32-35	26-30,38-41		
I/O ₀ - I/O ₇	7,8,11,12,25,	9,10,13,14,	Input/Output	Bidirectional Data I/O lines. Used as input or output lines
	26,29,30	31,32,35,36		depending on operation
NC ^[2]	19,36	1,2,21,22,23, 24,25,42,43,	No Connect	No Connects. This pin is not connected to the die
		44		
WE	13	15	Input/Control Write Enable Input, active LOW. When selected LOW, is conducted. When selected HIGH, a READ is conducted.	
CE	6	8	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
ŌĒ	31	37	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins.
V _{SS} , GND	10,28	12,34	Ground	Ground for the device. Should be connected to ground of the system.
V _{CC}	9,27	11,33	Power Supply	Power Supply inputs to the device.

Notes:
2. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[3]}$ –0.5V to +4.6V

DC Voltage Applied to Outputs	
DC Voltage Applied to Outputs in High-Z State ^[3]	$-0.5V$ to $V_{CC} + 0.5V$
DC Input Voltage ^[3]	. –0.5V to V_{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$3.3\text{V} \pm 0.3\text{V}$
Industrial	-40°C to +85°C	
Automotive	-40°C to +125°C	

Electrical Characteristics Over the Operating Range

Parame-				-8	3 []	-1	0	-1	12	-1	5	
ter	Description	Test Cond	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.; I_{OH} = 0$	–4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min.,; I _{OL} =	8.0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V						
V_{IL}	Input LOW Voltage[3]			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_CC$	Com'l / Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μА
			Automotive	-	-	-	-	-	-	-20	+20	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} GND \leq V_{OUT} \leq \\ V_{CC}, \end{array}$	Com'l / Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μА
		Output Disabled	Automotive	-	-	-	-	-	-	-20	+20	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		100		90		85		80	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		110		100		95		90	mA
			Automotive		-		-		-		95	mA
I _{SB1}	Automatic CE	Max. V _{CC} , CE ≥	Com'l / Ind'l		40		40		40		40	mA
	Power-down Current —TTL Inputs	V_{IH} ; $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	Automotive		-		-		-		45	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs $ \begin{array}{c} \underline{\text{Max}}. \ V_{\text{CC}}, \\ CE \geq V_{\text{CC}} - 0 \\ V_{\text{IN}} \geq V_{\text{CC}} - 0 \\ \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \\ \end{array} $		Com'l/Ind'l		10		10		10		10	mA
			Automotive		-		-		-		15	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 3.3V$	8	pF

Thermal Resistance^[4]

Parameter	Description	Test Conditions	36-pin SOJ (Non Pb-Free)	36-pin SOJ (Pb-Free)	44-TSOP-II (Non Pb-Free)	44-TSOP-II (Pb-Free)	Unit
Θ_{JA}	(Junction to Ambient)	Test conditions follow standard test methods and procedures for	46.51	46.51	41.66	41.66	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	measuring thermal impedance, per EIA / JESD51.	18.8	18.8	10.56	10.56	°C/W

^{3.} $V_{\rm IL}$ (min.) = -2.0V and $V_{\rm IH}$ (max) = $V_{\rm CC}$ + 0.5V for pulse durations of less than 20 ns. 4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[5]

AC Switching Characteristics^[6] Over the Operating Range

				-1	10	-12		-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								•		
t _{power} ^[7]	V _{CC} (typical) to the first access	1		1		1		1		μS
t _{RC}	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address to Data Valid		8		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3			3	ns
t _{ACE}	CE LOW to Data Valid		8		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		4		5		6		7	ns
t _{LZOE}	OE LOW to Low-Z	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		4		5		6		7	ns
t _{LZCE}	CE LOW to Low-Z ^[9]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		4		5		6		7	ns
t _{PU}	CE LOW to Power-up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-down		8		10		12		15	ns
Write Cycle ^[7]	10, 11]							•		
t _{WC}	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE LOW to Write End	6		7		8		10		ns
t _{AW}	Address Set-up to Write End	6		7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		10		ns
t _{SD}	Data Set-up to Write End	4		5		6		7		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		4		5		6		7	ns

^{5.} AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).

Switching Waveforms

Read Cycle No. 1^[12, 13]

Read Cycle No. 2 (OE Controlled)[13, 14]

- 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.

- test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
 tpOWER gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.
 t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZOE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any given device.
 The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
 The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
- 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 13. WE is HIGH for Read cycle.

Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled, OE HIGH During Write)[15, 16]

Write Cycle No. 2 (WE Controlled, OE LOW)[16]

- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 15. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.

 16. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.
- 17. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

CE	OE	WE	I/O ₀ -I/O ₇ Mode		Power
Н	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range		
10	CY7C1049CV33-10VC V36		0 CY7C1049CV33-10VC V36 36-lead (400-Mil) Molded SO.		36-lead (400-Mil) Molded SOJ	Commercial
	CY7C1049CV33-10ZC	Z44	44-pin TSOP II			
	CY7C1049CV33-10VI	V36	36-lead (400-Mil) Molded SOJ	Industrial		
	CY7C1049CV33-10ZI	Z44	44-pin TSOP II			
12	CY7C1049CV33-12VC	V36	36-lead (400-Mil) Molded SOJ	Commercial		
	CY7C1049CV33-12ZC	Z44	44-pin TSOP II			
	CY7C1049CV33-12VI	V36	36-lead (400-Mil) Molded SOJ	Industrial		
	CY7C1049CV33-12ZI	Z44	44-pin TSOP II			
15	CY7C1049CV33-15VXC	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Commercial		
	CY7C1049CV33-15VC	V36	36-lead (400-Mil) Molded SOJ			
	CY7C1049CV33-15ZXC	Z44	44-pin TSOP II (Pb-Free)			
	CY7C1049CV33-15ZC	Z44	44-pin TSOP II			
	CY7C1049CV33-15VI	V36	36-lead (400-Mil) Molded SOJ	Industrial		
	CY7C1049CV33-15ZI	Z44	44-pin TSOP II			
	CY7C1049CV33-15VE	V36	36-lead (400-Mil) Molded SOJ	Automotive		
	CY7C1049CV33-15ZE	Z44	44-pin TSOP II			

Package Diagrams

36-Lead (400-Mil) Molded SOJ V36

44-pin TSOP II Z44

DIMENSION IN MM (INCH) MAX

CSPI .095

115

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1049CV33 4-Mbit (512K x 8) Static RAM

Document	Number:	38-05006
----------	---------	----------

Document	ocument number. 30-03000								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	112569	03/06/02	HGK	New Data Sheet					
*A	114091	04/25/02	DFP	Changed Tpower unit from ns to μs					
*B	116479	09/16/02	CEA	Add applications foot note to data sheet, page 1.					
*C	262949	See ECN	RKF	Added Automotive Specs to Datasheet Added Θ_{JA} and Θ_{JC} values on Page #3.					